direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C92⋊5C3, C92⋊18C6, C9⋊C9⋊10C6, (C9×C18)⋊5C3, C32⋊C9.21C6, (C3×C6).28C33, C33.12(C3×C6), C6.10(C9○He3), (C3×C18).11C32, C32.32(C32×C6), (C32×C6).11C32, (C2×C9⋊C9)⋊7C3, (C3×C9).28(C3×C6), C3.10(C2×C9○He3), (C2×C32⋊C9).12C3, SmallGroup(486,204)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C92⋊5C3
G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc3, dcd-1=b6c >
Subgroups: 180 in 100 conjugacy classes, 66 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, C33, C3×C18, C32×C6, C92, C32⋊C9, C9⋊C9, C9×C18, C2×C32⋊C9, C2×C9⋊C9, C92⋊5C3, C2×C92⋊5C3
Quotients: C1, C2, C3, C6, C32, C3×C6, C33, C32×C6, C9○He3, C2×C9○He3, C92⋊5C3, C2×C92⋊5C3
(1 134)(2 135)(3 127)(4 128)(5 129)(6 130)(7 131)(8 132)(9 133)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 137)(20 138)(21 139)(22 140)(23 141)(24 142)(25 143)(26 144)(27 136)(28 88)(29 89)(30 90)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 106)(47 107)(48 108)(49 100)(50 101)(51 102)(52 103)(53 104)(54 105)(55 115)(56 116)(57 117)(58 109)(59 110)(60 111)(61 112)(62 113)(63 114)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 21 41 12 116 87 80 53 65)(2 22 42 13 117 88 81 54 66)(3 23 43 14 109 89 73 46 67)(4 24 44 15 110 90 74 47 68)(5 25 45 16 111 82 75 48 69)(6 26 37 17 112 83 76 49 70)(7 27 38 18 113 84 77 50 71)(8 19 39 10 114 85 78 51 72)(9 20 40 11 115 86 79 52 64)(28 162 105 147 135 140 123 94 57)(29 154 106 148 127 141 124 95 58)(30 155 107 149 128 142 125 96 59)(31 156 108 150 129 143 126 97 60)(32 157 100 151 130 144 118 98 61)(33 158 101 152 131 136 119 99 62)(34 159 102 153 132 137 120 91 63)(35 160 103 145 133 138 121 92 55)(36 161 104 146 134 139 122 93 56)
(2 81 13)(3 14 73)(5 75 16)(6 17 76)(8 78 10)(9 11 79)(19 54 111)(20 109 49)(21 24 27)(22 48 114)(23 112 52)(25 51 117)(26 115 46)(28 120 150)(29 145 118)(30 36 33)(31 123 153)(32 148 121)(34 126 147)(35 151 124)(37 89 64)(38 44 41)(39 69 88)(40 83 67)(42 72 82)(43 86 70)(45 66 85)(47 50 53)(55 106 144)(56 59 62)(57 143 102)(58 100 138)(60 137 105)(61 103 141)(63 140 108)(65 71 68)(84 90 87)(91 132 159)(92 160 133)(94 135 162)(95 154 127)(97 129 156)(98 157 130)(101 104 107)(110 113 116)(119 125 122)(136 139 142)(146 152 149)
G:=sub<Sym(162)| (1,134)(2,135)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,136)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,106)(47,107)(48,108)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,21,41,12,116,87,80,53,65)(2,22,42,13,117,88,81,54,66)(3,23,43,14,109,89,73,46,67)(4,24,44,15,110,90,74,47,68)(5,25,45,16,111,82,75,48,69)(6,26,37,17,112,83,76,49,70)(7,27,38,18,113,84,77,50,71)(8,19,39,10,114,85,78,51,72)(9,20,40,11,115,86,79,52,64)(28,162,105,147,135,140,123,94,57)(29,154,106,148,127,141,124,95,58)(30,155,107,149,128,142,125,96,59)(31,156,108,150,129,143,126,97,60)(32,157,100,151,130,144,118,98,61)(33,158,101,152,131,136,119,99,62)(34,159,102,153,132,137,120,91,63)(35,160,103,145,133,138,121,92,55)(36,161,104,146,134,139,122,93,56), (2,81,13)(3,14,73)(5,75,16)(6,17,76)(8,78,10)(9,11,79)(19,54,111)(20,109,49)(21,24,27)(22,48,114)(23,112,52)(25,51,117)(26,115,46)(28,120,150)(29,145,118)(30,36,33)(31,123,153)(32,148,121)(34,126,147)(35,151,124)(37,89,64)(38,44,41)(39,69,88)(40,83,67)(42,72,82)(43,86,70)(45,66,85)(47,50,53)(55,106,144)(56,59,62)(57,143,102)(58,100,138)(60,137,105)(61,103,141)(63,140,108)(65,71,68)(84,90,87)(91,132,159)(92,160,133)(94,135,162)(95,154,127)(97,129,156)(98,157,130)(101,104,107)(110,113,116)(119,125,122)(136,139,142)(146,152,149)>;
G:=Group( (1,134)(2,135)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,136)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,106)(47,107)(48,108)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,21,41,12,116,87,80,53,65)(2,22,42,13,117,88,81,54,66)(3,23,43,14,109,89,73,46,67)(4,24,44,15,110,90,74,47,68)(5,25,45,16,111,82,75,48,69)(6,26,37,17,112,83,76,49,70)(7,27,38,18,113,84,77,50,71)(8,19,39,10,114,85,78,51,72)(9,20,40,11,115,86,79,52,64)(28,162,105,147,135,140,123,94,57)(29,154,106,148,127,141,124,95,58)(30,155,107,149,128,142,125,96,59)(31,156,108,150,129,143,126,97,60)(32,157,100,151,130,144,118,98,61)(33,158,101,152,131,136,119,99,62)(34,159,102,153,132,137,120,91,63)(35,160,103,145,133,138,121,92,55)(36,161,104,146,134,139,122,93,56), (2,81,13)(3,14,73)(5,75,16)(6,17,76)(8,78,10)(9,11,79)(19,54,111)(20,109,49)(21,24,27)(22,48,114)(23,112,52)(25,51,117)(26,115,46)(28,120,150)(29,145,118)(30,36,33)(31,123,153)(32,148,121)(34,126,147)(35,151,124)(37,89,64)(38,44,41)(39,69,88)(40,83,67)(42,72,82)(43,86,70)(45,66,85)(47,50,53)(55,106,144)(56,59,62)(57,143,102)(58,100,138)(60,137,105)(61,103,141)(63,140,108)(65,71,68)(84,90,87)(91,132,159)(92,160,133)(94,135,162)(95,154,127)(97,129,156)(98,157,130)(101,104,107)(110,113,116)(119,125,122)(136,139,142)(146,152,149) );
G=PermutationGroup([[(1,134),(2,135),(3,127),(4,128),(5,129),(6,130),(7,131),(8,132),(9,133),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,137),(20,138),(21,139),(22,140),(23,141),(24,142),(25,143),(26,144),(27,136),(28,88),(29,89),(30,90),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,106),(47,107),(48,108),(49,100),(50,101),(51,102),(52,103),(53,104),(54,105),(55,115),(56,116),(57,117),(58,109),(59,110),(60,111),(61,112),(62,113),(63,114),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,21,41,12,116,87,80,53,65),(2,22,42,13,117,88,81,54,66),(3,23,43,14,109,89,73,46,67),(4,24,44,15,110,90,74,47,68),(5,25,45,16,111,82,75,48,69),(6,26,37,17,112,83,76,49,70),(7,27,38,18,113,84,77,50,71),(8,19,39,10,114,85,78,51,72),(9,20,40,11,115,86,79,52,64),(28,162,105,147,135,140,123,94,57),(29,154,106,148,127,141,124,95,58),(30,155,107,149,128,142,125,96,59),(31,156,108,150,129,143,126,97,60),(32,157,100,151,130,144,118,98,61),(33,158,101,152,131,136,119,99,62),(34,159,102,153,132,137,120,91,63),(35,160,103,145,133,138,121,92,55),(36,161,104,146,134,139,122,93,56)], [(2,81,13),(3,14,73),(5,75,16),(6,17,76),(8,78,10),(9,11,79),(19,54,111),(20,109,49),(21,24,27),(22,48,114),(23,112,52),(25,51,117),(26,115,46),(28,120,150),(29,145,118),(30,36,33),(31,123,153),(32,148,121),(34,126,147),(35,151,124),(37,89,64),(38,44,41),(39,69,88),(40,83,67),(42,72,82),(43,86,70),(45,66,85),(47,50,53),(55,106,144),(56,59,62),(57,143,102),(58,100,138),(60,137,105),(61,103,141),(63,140,108),(65,71,68),(84,90,87),(91,132,159),(92,160,133),(94,135,162),(95,154,127),(97,129,156),(98,157,130),(101,104,107),(110,113,116),(119,125,122),(136,139,142),(146,152,149)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | 3J | 6A | ··· | 6H | 6I | 6J | 9A | ··· | 9X | 9Y | ··· | 9AN | 18A | ··· | 18X | 18Y | ··· | 18AN |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | 9 | 1 | ··· | 1 | 9 | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9○He3 | C2×C9○He3 |
kernel | C2×C92⋊5C3 | C92⋊5C3 | C9×C18 | C2×C32⋊C9 | C2×C9⋊C9 | C92 | C32⋊C9 | C9⋊C9 | C6 | C3 |
# reps | 1 | 1 | 2 | 8 | 16 | 2 | 8 | 16 | 24 | 24 |
Matrix representation of C2×C92⋊5C3 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 17 | 1 | 0 |
0 | 0 | 0 | 0 | 2 | 16 |
0 | 0 | 0 | 14 | 14 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 6 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 8 | 8 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 18 | 11 | 0 |
0 | 0 | 0 | 11 | 0 | 7 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,17,0,14,0,0,0,1,2,14,0,0,0,0,16,0],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,7,0,8,0,0,0,6,12,8,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,18,11,0,0,0,0,11,0,0,0,0,0,0,7] >;
C2×C92⋊5C3 in GAP, Magma, Sage, TeX
C_2\times C_9^2\rtimes_5C_3
% in TeX
G:=Group("C2xC9^2:5C3");
// GroupNames label
G:=SmallGroup(486,204);
// by ID
G=gap.SmallGroup(486,204);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,500,2169,165]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^3,d*c*d^-1=b^6*c>;
// generators/relations