Copied to
clipboard

G = C2×C925C3order 486 = 2·35

Direct product of C2 and C925C3

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C2×C925C3, C9218C6, C9⋊C910C6, (C9×C18)⋊5C3, C32⋊C9.21C6, (C3×C6).28C33, C33.12(C3×C6), C6.10(C9○He3), (C3×C18).11C32, C32.32(C32×C6), (C32×C6).11C32, (C2×C9⋊C9)⋊7C3, (C3×C9).28(C3×C6), C3.10(C2×C9○He3), (C2×C32⋊C9).12C3, SmallGroup(486,204)

Series: Derived Chief Lower central Upper central

C1C32 — C2×C925C3
C1C3C32C3×C9C92C925C3 — C2×C925C3
C1C32 — C2×C925C3
C1C3×C6 — C2×C925C3

Generators and relations for C2×C925C3
 G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc3, dcd-1=b6c >

Subgroups: 180 in 100 conjugacy classes, 66 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, C33, C3×C18, C32×C6, C92, C32⋊C9, C9⋊C9, C9×C18, C2×C32⋊C9, C2×C9⋊C9, C925C3, C2×C925C3
Quotients: C1, C2, C3, C6, C32, C3×C6, C33, C32×C6, C9○He3, C2×C9○He3, C925C3, C2×C925C3

Smallest permutation representation of C2×C925C3
On 162 points
Generators in S162
(1 134)(2 135)(3 127)(4 128)(5 129)(6 130)(7 131)(8 132)(9 133)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 137)(20 138)(21 139)(22 140)(23 141)(24 142)(25 143)(26 144)(27 136)(28 88)(29 89)(30 90)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 106)(47 107)(48 108)(49 100)(50 101)(51 102)(52 103)(53 104)(54 105)(55 115)(56 116)(57 117)(58 109)(59 110)(60 111)(61 112)(62 113)(63 114)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 21 41 12 116 87 80 53 65)(2 22 42 13 117 88 81 54 66)(3 23 43 14 109 89 73 46 67)(4 24 44 15 110 90 74 47 68)(5 25 45 16 111 82 75 48 69)(6 26 37 17 112 83 76 49 70)(7 27 38 18 113 84 77 50 71)(8 19 39 10 114 85 78 51 72)(9 20 40 11 115 86 79 52 64)(28 162 105 147 135 140 123 94 57)(29 154 106 148 127 141 124 95 58)(30 155 107 149 128 142 125 96 59)(31 156 108 150 129 143 126 97 60)(32 157 100 151 130 144 118 98 61)(33 158 101 152 131 136 119 99 62)(34 159 102 153 132 137 120 91 63)(35 160 103 145 133 138 121 92 55)(36 161 104 146 134 139 122 93 56)
(2 81 13)(3 14 73)(5 75 16)(6 17 76)(8 78 10)(9 11 79)(19 54 111)(20 109 49)(21 24 27)(22 48 114)(23 112 52)(25 51 117)(26 115 46)(28 120 150)(29 145 118)(30 36 33)(31 123 153)(32 148 121)(34 126 147)(35 151 124)(37 89 64)(38 44 41)(39 69 88)(40 83 67)(42 72 82)(43 86 70)(45 66 85)(47 50 53)(55 106 144)(56 59 62)(57 143 102)(58 100 138)(60 137 105)(61 103 141)(63 140 108)(65 71 68)(84 90 87)(91 132 159)(92 160 133)(94 135 162)(95 154 127)(97 129 156)(98 157 130)(101 104 107)(110 113 116)(119 125 122)(136 139 142)(146 152 149)

G:=sub<Sym(162)| (1,134)(2,135)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,136)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,106)(47,107)(48,108)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,21,41,12,116,87,80,53,65)(2,22,42,13,117,88,81,54,66)(3,23,43,14,109,89,73,46,67)(4,24,44,15,110,90,74,47,68)(5,25,45,16,111,82,75,48,69)(6,26,37,17,112,83,76,49,70)(7,27,38,18,113,84,77,50,71)(8,19,39,10,114,85,78,51,72)(9,20,40,11,115,86,79,52,64)(28,162,105,147,135,140,123,94,57)(29,154,106,148,127,141,124,95,58)(30,155,107,149,128,142,125,96,59)(31,156,108,150,129,143,126,97,60)(32,157,100,151,130,144,118,98,61)(33,158,101,152,131,136,119,99,62)(34,159,102,153,132,137,120,91,63)(35,160,103,145,133,138,121,92,55)(36,161,104,146,134,139,122,93,56), (2,81,13)(3,14,73)(5,75,16)(6,17,76)(8,78,10)(9,11,79)(19,54,111)(20,109,49)(21,24,27)(22,48,114)(23,112,52)(25,51,117)(26,115,46)(28,120,150)(29,145,118)(30,36,33)(31,123,153)(32,148,121)(34,126,147)(35,151,124)(37,89,64)(38,44,41)(39,69,88)(40,83,67)(42,72,82)(43,86,70)(45,66,85)(47,50,53)(55,106,144)(56,59,62)(57,143,102)(58,100,138)(60,137,105)(61,103,141)(63,140,108)(65,71,68)(84,90,87)(91,132,159)(92,160,133)(94,135,162)(95,154,127)(97,129,156)(98,157,130)(101,104,107)(110,113,116)(119,125,122)(136,139,142)(146,152,149)>;

G:=Group( (1,134)(2,135)(3,127)(4,128)(5,129)(6,130)(7,131)(8,132)(9,133)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,136)(28,88)(29,89)(30,90)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,106)(47,107)(48,108)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,115)(56,116)(57,117)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,21,41,12,116,87,80,53,65)(2,22,42,13,117,88,81,54,66)(3,23,43,14,109,89,73,46,67)(4,24,44,15,110,90,74,47,68)(5,25,45,16,111,82,75,48,69)(6,26,37,17,112,83,76,49,70)(7,27,38,18,113,84,77,50,71)(8,19,39,10,114,85,78,51,72)(9,20,40,11,115,86,79,52,64)(28,162,105,147,135,140,123,94,57)(29,154,106,148,127,141,124,95,58)(30,155,107,149,128,142,125,96,59)(31,156,108,150,129,143,126,97,60)(32,157,100,151,130,144,118,98,61)(33,158,101,152,131,136,119,99,62)(34,159,102,153,132,137,120,91,63)(35,160,103,145,133,138,121,92,55)(36,161,104,146,134,139,122,93,56), (2,81,13)(3,14,73)(5,75,16)(6,17,76)(8,78,10)(9,11,79)(19,54,111)(20,109,49)(21,24,27)(22,48,114)(23,112,52)(25,51,117)(26,115,46)(28,120,150)(29,145,118)(30,36,33)(31,123,153)(32,148,121)(34,126,147)(35,151,124)(37,89,64)(38,44,41)(39,69,88)(40,83,67)(42,72,82)(43,86,70)(45,66,85)(47,50,53)(55,106,144)(56,59,62)(57,143,102)(58,100,138)(60,137,105)(61,103,141)(63,140,108)(65,71,68)(84,90,87)(91,132,159)(92,160,133)(94,135,162)(95,154,127)(97,129,156)(98,157,130)(101,104,107)(110,113,116)(119,125,122)(136,139,142)(146,152,149) );

G=PermutationGroup([[(1,134),(2,135),(3,127),(4,128),(5,129),(6,130),(7,131),(8,132),(9,133),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,137),(20,138),(21,139),(22,140),(23,141),(24,142),(25,143),(26,144),(27,136),(28,88),(29,89),(30,90),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,106),(47,107),(48,108),(49,100),(50,101),(51,102),(52,103),(53,104),(54,105),(55,115),(56,116),(57,117),(58,109),(59,110),(60,111),(61,112),(62,113),(63,114),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,21,41,12,116,87,80,53,65),(2,22,42,13,117,88,81,54,66),(3,23,43,14,109,89,73,46,67),(4,24,44,15,110,90,74,47,68),(5,25,45,16,111,82,75,48,69),(6,26,37,17,112,83,76,49,70),(7,27,38,18,113,84,77,50,71),(8,19,39,10,114,85,78,51,72),(9,20,40,11,115,86,79,52,64),(28,162,105,147,135,140,123,94,57),(29,154,106,148,127,141,124,95,58),(30,155,107,149,128,142,125,96,59),(31,156,108,150,129,143,126,97,60),(32,157,100,151,130,144,118,98,61),(33,158,101,152,131,136,119,99,62),(34,159,102,153,132,137,120,91,63),(35,160,103,145,133,138,121,92,55),(36,161,104,146,134,139,122,93,56)], [(2,81,13),(3,14,73),(5,75,16),(6,17,76),(8,78,10),(9,11,79),(19,54,111),(20,109,49),(21,24,27),(22,48,114),(23,112,52),(25,51,117),(26,115,46),(28,120,150),(29,145,118),(30,36,33),(31,123,153),(32,148,121),(34,126,147),(35,151,124),(37,89,64),(38,44,41),(39,69,88),(40,83,67),(42,72,82),(43,86,70),(45,66,85),(47,50,53),(55,106,144),(56,59,62),(57,143,102),(58,100,138),(60,137,105),(61,103,141),(63,140,108),(65,71,68),(84,90,87),(91,132,159),(92,160,133),(94,135,162),(95,154,127),(97,129,156),(98,157,130),(101,104,107),(110,113,116),(119,125,122),(136,139,142),(146,152,149)]])

102 conjugacy classes

class 1  2 3A···3H3I3J6A···6H6I6J9A···9X9Y···9AN18A···18X18Y···18AN
order123···3336···6669···99···918···1818···18
size111···1991···1993···39···93···39···9

102 irreducible representations

dim1111111133
type++
imageC1C2C3C3C3C6C6C6C9○He3C2×C9○He3
kernelC2×C925C3C925C3C9×C18C2×C32⋊C9C2×C9⋊C9C92C32⋊C9C9⋊C9C6C3
# reps11281628162424

Matrix representation of C2×C925C3 in GL6(𝔽19)

100000
010000
001000
0001800
0000180
0000018
,
1600000
0160000
0016000
0001710
0000216
00014140
,
010000
001000
100000
000760
0000121
000880
,
100000
070000
0011000
000100
00018110
0001107

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,17,0,14,0,0,0,1,2,14,0,0,0,0,16,0],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,7,0,8,0,0,0,6,12,8,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,18,11,0,0,0,0,11,0,0,0,0,0,0,7] >;

C2×C925C3 in GAP, Magma, Sage, TeX

C_2\times C_9^2\rtimes_5C_3
% in TeX

G:=Group("C2xC9^2:5C3");
// GroupNames label

G:=SmallGroup(486,204);
// by ID

G=gap.SmallGroup(486,204);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,500,2169,165]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^3,d*c*d^-1=b^6*c>;
// generators/relations

׿
×
𝔽